Random Variable Expectation
一枚硬币, 扔出 H 的概率为 $p$, T 的概率为 $q$, 计算首次扔出 $T\underbrace{H\dots H}_{k}$ 所需投掷次数的数学期望。
我们先来考虑 $\underbrace{H\dots H}_{k}$ 这样简单后的情形,然后试图将其推广到任意模式的一般情况。
记 随机变量 $X_k$ 为 首次投掷出 $\underbrace{H\dots H}_{k}$ 所需的次数。
Solution 1
设我们要求的数学期望为 $e$, 则有
$$ e = q (1+e) + p q (2+e) + p p q (3+e) + p^{k-1} q (k+e) + pk k $$
这是对前 $k$ 位可能出现的模式进行分类讨论得到的。
记 $S=1+2p+3p2+\dots+kp^{k-1}$, 可得 $S=1/q((1-pk)/q-kpk)$.
e
= q(1+2p+3p^2+\dots+kp^{k-1})+kp^k+q(1+p+\dots+p^{k-1})e
= q\cdot 1/q ((1-p^k)/q-kp^k) + kp^k + q 1/q(1-p^k) e
= (1-p^k)/q + (1-p^k) e
从而
$$e = 1/q (1/p ^k - 1)$$
这与我们上面的结果是吻合的。
推广:首次投掷出 HTHHT
$$e = q(1+e) + pp(2+e) + pqq(3+e) + pqpq(4+e) + pqppp(5+e) + pqppq 5$$
Solution 2
X_k = (X_{k-1} + 1)\cdot p + (X_{k-1} + 1 + X_k)\cdot q
X_0 = 0
X_k = 1/p X_{k-1} + 1/p
X_k = 1/q (1/p ^k - 1)
而递推式的由来在于
Pr(X_k = n)
= Pr(X_{k-1} = n-1) p + \sum_m [ Pr(X_{k-1}=m) q Pr(X_{k}=n-m-1) ]
= p Pr(X_{k-1}+1 = n) + q \sum_m [ Pr(X_{k-1}=m) Pr(X_{k}+1=n-m) ]
也就是
X_k = p (X_{k-1}+1) + q (X_{k-1}+X_{k}+1)
这是由于对于随机变量 X, Y, Z
, 若 Z=X+Y
,则
Pr(Z=n) = \sum_m [Pr(X=m) Pr(Y=n-m)]
递推法可以使得我们顺便求出所有的 X_k
推广:首次投掷出 HTHHT
Solution 3
If f(x)
is the generating function of the probability p_n
of the ending after n
tosses
f(x) = \sum_n p_n x^n
Consider the following toss strings, probabilities, and terms
T q qx
HT pq pqx^2
HHT p^2q p^2qx^3
\underbrace{H\dots H}_{k-1}T p^{k-1}q p^{k-1}qx^k
\underbrace{H\dots H}_k p^{k} p^kx^k
We get the generating function of the probability of ending after n
tosses to be
f(x)
= \sum_m (\sum_{t=1}^k p^{t-1}qx^t)^m p^kx^k
= p^kx^k / (1-\sum_{t=1}^k p^{t-1}qx^t)
f'(1) = \sum p_n n =
推广:首次投掷出 HTHHT
T qx
HH p^2x^2
HTT pq^2x^3
HTHT p^2q^2x^4
HTHHH p^4qx^5
HTHHT p^3q^2x^5
f(x)
=\sum (qx+p^2x^2+pq^2x^3+p^2q^2x^4+p^4qx^5)^m p^3q^2x^5
=